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Abstract 

 

The topic of division by zero has been debated for centuries.  From grade school to post-secondary 

education, our youth have repeatedly been taught “You can’t divide by zero.”, “Dividing by zero is 

impossible.”, “It’s undefined.”  Rather than presenting another scholarly work supporting the concept of 

division by zero of having a numerical solution, the goal of this paper was to develop a new arithmetic 

errorless calculator software tool that eliminates mathematical paradoxes.  These paradoxes include 

arithmetic that results in division by zero as well as indeterminant forms such as zero divided by zero.  To 

do this, a new number system will be briefly introduced and is referred to as omnifinite numbers.  Using 

this proposed number system, the resulting calculator tool was found to be simple to use, intuitive, and 

fun.  In addition, all numeric outputs performed by the calculator tool are arithmetically error free.  The 

presentation of this work at the conference shall give attendees in real time an opportunity to use the 

errorless calculator tool hands-on and ask questions.  This work serves as a manual of instruction in 

support of using and understanding this new technological software tool.  To the authors’ knowledge, this 

is the world’s first arithmetic errorless calculator.  It is the hope of the authors that this work also serves 

as the start of a bridge to the future of greater mathematical understanding and knowledge which will lead 

to improvements in technology across all fields, and this all begins with the building blocks of fundamental 

mathematics, specifically numbers.   

 

Introduction to Omnifinite Numbers 

 

This paper introduces the concept of omnifinite numbers, which is a new but similar system of numbers 

as compared to the hyperreals.  A detailed discussion regarding the properties of omnifinite numbers is 

beyond the scope of this work and is not needed for understanding the basics of these numbers and how 

the errorless calculator software tool works and functions.  In general, omnifinites are a more robust and 

complete number system than other number systems commonly used today such as the reals or hyperreals.  

As mentioned, omnifinite numbers are very similar to hyperreals in that numbers may be finite or 

nonfinite.  Nonfinite numbers may be infinitesimal, infinite, or a combination.  In short, the omnifinites, 

like the hyperreals, allow for very small, normal, and very large numbers that the reals are unable to 

adequately describe since they are finite.  A brief discussion and overview of some of the important aspects 

and principles of omnifinites is presented in this section.  The next section will present some of the 

properties of omnifinite numbers to help better understand how zero and differing infinities and 

infinitesimals work within the context of mathematical arithmetic.  Of importance throughout this paper 

is basic arithmetic which is what led to the development of the errorless calculator software tool. 
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For this work in developing and creating the errorless calculator, the authors introduce a new set of 

numbers referred to as omnifinites.  Generally, in mathematics, a number is an arithmetic value used to 

represent a quantity.  This definition implicitly implies a concept of size as well as order, but not explicitly.  

For omnifinites, this definition is used as well.  The Greeks, in defining and describing a number, the 

concept of “The part of a number is less than the whole.” was foundational (Sergeyev, 2013).  To the 

Greeks, this concept was a governing principle to all numbers, and for the Greeks, this meant all real 

numbers, finite numbers.  Omnifinite numbers, which include all finite and all nonfinite numbers, share 

this fundamental principle regardless of the size of the number.  This is important distinction which will 

be further explored and explained in an upcoming work on omnifinite set theory as compared to Prof. 

Georg Cantor’s set theory (Cantor, 1890).   

 

Omninfinites, 𝕆, may be easily compared to other more familiar number systems like the reals, ℝ, and 

the hyperreals, *ℝ, as shown in Figure 1.  The line representing the reals is dashed in Figure 1 since all 

infinitesimals have been removed or compacted out of the number system.  Unlike the reals and hyperreals, 

omnifinites are a closed system of numbers.  The number line systems for the reals and hyperreals as 

shown in Figure 1 have arrows at both ends of the line segment indicating that they continue in both 

directions in a finite and nonfinite directions, respectively.  The omnifinite number line starts with a 

number and ends at another number.  There are no graphical arrows associated with the omnifinite number 

system.  Thus, the omnifinite number system is closed and not open.  The reals are an open system of 

numbers, meaning there is a smallest nonnegative, real number, 0, but no largest positive real number nor 

largest negative real number, which explains the arrowheads graphically on that number line.  The 

hyperreals are similar.  They have no largest positive infinite number nor largest negative infinite number 

(Krakoff, 2015).  Omnifinites are different.  They have a largest positive infinite number and a largest 

negative infinite number.  These special numbers are absolute (positive) infinity, ∞, and absolute negative 

infinity, -∞, respectively, as shown in Figure 1.  The whole numbered reals extend finitely to nearly 

infinity, but infinity is deemed a concept of boundlessness and not a number, since it is nonfinite.  For 

omnifinites and hyperreals, nonfinite numbers may be infinites or infinitesimals as shown in Figure 1.  

However, there are some differences between omnifinites and hyperreals.  With omnifinites, division by 

zero is fully allowed which is not permitted with hyperreals, nor the reals (Keisler, 2012).  This will be 

discussed in greater detail in the next section.  For the hyperreals, the infinites and infinitesimals are 

specified by using omega, , and epsilon, , notations, respectively (Keisler, 2012).  For simplicity, 

omnifinites use the original lemniscate notation symbol, ∞, as established by John Wallis (Wallis, 1656) 

for use in denoting nonfinite numbers such as infinities and infinitesimals.   All finite numbers have a 

hidden term of ∞0 which equals unity.  Nonfinite numbers, that are infinites, have a term, ∞n, where n is 

greater than zero.  Nonfinite numbers, that are infinitesimals, have the same term, ∞n, where n is less than 

zero.  

 

In general, nearly all numbers are well behaved quantities and act as expected.  This is true of finite and 

nonfinite numbers.  Whiles most numbers behave alike in terms of operational properties, there are 

numbers that have unique properties that no other numbers possess.  These numbers are zero, 0, and 

traditional positive and negative infinity, ±∞.  For the omnifinites, traditional infinity behaves similarly to 

any other number as it is just another infinite number in an ocean of infinities.  However, absolute infinity, 

∞, is different.  Absolute infinity is the infinity of all infinities.  Thus, this number, like zero, has special 

properties, which differ than all other numbers.  Absolute negative infinity behaves in a similar manner as 

absolute (positive) infinity, but it is a nonpositive or negative number.  These three (3) particular numbers, 

-∞, 0, ∞, are not the same as other numbers.  They are special.  Their lack of understanding of how these 

numbers interacted with other numbers and themselves led to the rise of what was referred to as special 

forms in mathematics (Cauchy, 1821).  Unfortunately, religion and politics in Europe centuries ago led to 

a type of phobia regarding zero and infinity, where the devil was associated with zero, and God was 



SUBMITTED BUT NOT ACCEPTED FOR PUBLICATION 

associated with infinity (Seife, 2000; Aczel, 2014).  Due to the rise of European thinking globally which 

included this uncertainty and phobia of certain arithmetic, mathematical forms became ingrained in the 

fabric of cultures and mathematical philosophy across the world like a plague or curse that would not 

dissipate.  For over one hundred and fifty years, these special forms have been referred to as indeterminant 

forms (Moigno, 1840), meaning mathematically these expressions do not have solutions or require 

mathematical manipulation such as by L’Hopital’s rule for solving (L’Hopital, 1696).  The truth is our 

outstanding and lack of knowledge regarding infinity and our inability to properly define it led to these 

unknown expressions that students have been cautioned on when they are encountered.  To this day, 

generation after generation, century after century, our youth are taught to be cautious of these expressions 

which have no solutions and have created unwarranted and unneeded uncertainty in the foundation of our 

understanding of mathematics.    Unfortunately, this continues to this very day, and this errorless calculator 

software tool has been created to shed light and understanding regarding these forms. 

 

 

 

 
 

Real numbers, open system 

 

 

 

 

 

 

Hyperreal numbers, open system 

 

 

 

 

Omnifinites numbers, closed system 

Figure 1. Common number systems in mathematics and the omnifinite number system 

 

Properties of Omnifinites 

 

Zero is a special number; it is an even number and not odd.  The signage of zero is neither positive nor 

negative, and it is the only number with such a property.  As such, in terms of omnifinites, specifically 

absolute infinity, ±∞, zero may be expressed mathematically by the following two (2) equations.  

 

0 = 1 ÷ ∞ = -1 ÷ -∞ = ∞-1          (1) 

 

0 = -1 ÷ ∞ = 1 ÷ -∞ = -∞-1         (2) 

 

Zero is an integer and not a prime number. When multiplied by another finite or real number or by a 

nonfinite number such as an infinitesimal or infinity other than absolute infinity, ±∞, the result is itself, 

zero.  For omnifinites, division by zero is fully defined and not undefined.  Any nonzero number divided 
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by zero is absolute infinity, ±∞, where the signage of the resultant is based on the sign of the number in 

the numerator.  In addition, zero divided by zero is also fully defined as follows. 

 

0 ÷ 0 = 1                            (3) 

 

For omnifinites, the usage of the lemniscate, ∞, as a symbol for a number does not make the resulting 

number special, but it does determine if the number is finite or nonfinite based on the value of the exponent 

of ∞n as mentioned previously.  If the exponent is zero, the number is finite.  If the exponent is less than 

zero, the number is an infinitesimal.  If the exponent is greater than zero, the number is an infinite.   

However, the largest of all infinites, absolute (positive) infinity, ∞, and the large negative infinity, absolute 

negative infinity, -∞, are special numbers, like zero, and have similar properties.  Absolute infinities are 

even numbers and not odd.  The signage of absolute infinity may be positive or negative.  For omnifinites, 

specially zero, absolute infinities, ±∞, may be expressed mathematically by the following two (2) 

equations.  

 

      ∞ = 1 ÷ 0 = 0-1              (4) 

 
-∞ = -1 ÷ 0 = -(0-1)             (5) 

 

Absolute infinities are nonfinite integers.  When multiplied by another finite or real number other than 

zero or by a nonfinite number such as an infinitesimal or an infinite, the resultant is equal to itself, ±∞,  

where the signage of the resultant is based on the sign of the quotients as is the normal practice involving 

multiplication as shown in the examples in Table 1.   

 

Table 1. Arithmetic examples of multiplication with absolute infinities, ±∞ 

 

 

 

 

 

 

 

 

 

 

 
†Order of the numbers not important, same solution results 

 

Division by absolute infinities is fully defined.  Any number other than absolute infinities divided by 

absolute infinities, ±∞, is zero as shown in the examples in Table 2.  

 

Absolute infinities divided by absolute infinities are also fully defined as follows. 

 

∞ ÷ ∞ = 1    (6) 

   
-∞ ÷ ∞ = -1     (7) 

  

∞ ÷ (-∞) = -1    (8) 

  
-∞ ÷ (-∞) = 1        (9) 

Example† Solution 

3 × ∞ ∞ 
-7 × ∞ -∞ 

2∞ × ∞ ∞ 
-9∞2 × ∞ -∞ 

5 × -∞ -∞ 
-6 × -∞ ∞ 

4∞ × -∞ -∞ 
-8∞3 × -∞ ∞ 
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Table 2. Arithmetic examples of division with absolute infinities, ±∞ 

  

 

 

 

 
 

 

 

 

 

 

†Order of the numbers is important, a different solution results if order is changed 

 

Palmquist’s law of number unity states that all numbers have a multiplicative inverse equal to unity as 

shown in equation (10) as follows. 

 

          n × n-1 = 1  (10) 

 

Arithmetically, this may be interpreted as any number raised to the exponent of zero or any number divided 

by itself is also equal to unity as shown in equation (11) as follows,   

 

n0 = n ÷ n = 1  (11) 

 

where n is any number, finite or nonfinite including zero and absolute infinities, ±∞.  This applies to all 

numbers.  Since zero is equal to the ratio of 1/∞ as well as the ratio of -1/-
 ∞, these equations may be 

multiplied by ∞ and -∞, respectively, on both sides, which result in the following two (2) equations. 

 

∞ × 0 = 1  (12) 

 
-

 ∞ × 0 = -1           (13) 

 

The seven (7) fundamental indeterminant forms are important in mathematics and needed in the study of 

functional expressions and limits.  In particularly, L’Hopital’s rule can be helpful when finding limits of 

functional expressions or functions that are referred to as indeterminant such as 0/0 and ±∞/±∞.  However, 

in terms of arithmetic computations, the resulting numbers are by nature deterministic, and not 

indeterminant.  Arithmetic of numbers cannot yield indeterminant nor undefined numerical expressions 

in mathematics.  They may be nonreal numbers such as ∞, ∞2, or ∞.  In some instances, the solution may 

not be known or available (as of yet) due the complexity of the numbers and operations being performed, 

but they are still by nature deterministic.  Referring to any simplistic arithmetic computation, especially a 

basic mathematical expression involving a simple operator and two (2) numbers such as 0, 1, 2, and so 

forth as indeterminant or undefined, is incorrect.  In mathematics, these terms mean that the resulting 

expressions have no definite or definable value.  The implication of saying that anything such as a basic 

mathematical arithmetic expression has no definitive solution is incorrect and troubling.  Yet, this is being 

taught to our youth every day, and they are also taught not to question it.  Words have meaning.  Arithmetic 

computations have solutions which are numbers of some form.  The practice of referring to arithmetic 

expression as indeterminant or undefined needs to end.   

 

Example† Solution 

3 ÷ ∞ 0 
-7 ÷ ∞ 0 

2∞ ÷ ∞ 0 
-9∞2 ÷ ∞ 0 

5 ÷ -∞ 0 
-6 ÷ (-∞) 0 

4∞ ÷ (-∞) 0 
-8∞3 ÷ (-∞) 0 
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With omnifinites, there are no indeterminant arithmetic solutions.  All such arithmetic forms have 

numerical solutions.  However, there are special numbers with omnifinites.  These numbers have special 

properties that no other omnifinites have.  A couple of these properties are shown in Table 3.  

 

Table 3. Special properties of zero, 0, and absolute infinities, ±∞ 

     

 

 

 

 

 

 

 

For the purposes of establishing a direct connection between omnifinites and the hyperreals (Keisler, 

2012) as well as other numbers such as the transfinite numbers which include the alephs and ordinals as 

developed by Prof. Dr. Georg Cantor (Cantor, 1874), the lowest omnifinite whole number that is countably 

infinite is assigned to be as follows, 

 

∞ = ∞c = ∞0 = ω = ℵ0 = ω0      (14) 

 

where c denotes the lowest countable infinite whole number.   

 

The number infinity, ∞, in terms of omnifinites, which is ∞c, is also equal to ω of the hyperreals.  The 

number infinity, ∞, has also been assigned to be even and equal to Cantor’s first countable ordinal, ω0, 

and first countable aleph, ℵ0.  The lowest omnifinite uncountably infinite whole number is as follows. 

 

∞uc = ∞1 = ℵ1 = ω1           (15) 

 

The Great Divide, Division by Zero 

 

The great divide refers to division of all nonzero numbers by zero. In mathematics, division by zero is 

“Undefined.” (Alfeld, 1997; Cajori, 1929; Ohm, 1828; Neely, 2000; and Paolilli, 2017).  The word 

“undefined” means an expression which is not assigned an interpretation or value.  For more than a 

millennium, zero has been considered as an actual real number.  If one or any other nonzero real number 

is divided by zero, mathematics has no interpretation, no answer for this.  How in the third millennium 

can there be no mathematical interpretation for a simple arithmetic problem involving two real numbers 

where division by zero occurs?  Why do the axioms of mathematics permit such a significant hole or gap 

in basic arithmetic mathematics?  Perhaps, this is done for mathematical convenience and not 

mathematical truth.  If this is fundamentally true where division by zero has no mathematical answer, then 

this says something more than just about mathematics and more than just about science.  This says 

something about the very fabric of knowledge and truth.  It implies that there are holes or gaps within the 

fundamental structure of the nature of knowledge and truth.  The authors of this work reject this and firmly 

believe that all fundamental knowledge and truth is fully complete and without holes or gaps though 

determining or discovering this is challenging and not an easy feat to accomplish.  Perhaps, a better answer 

within the context of the reals, is that division by zero results in a nonreal number which is outside the 

real number system.  Do you think that the most appropriate and acceptable mathematical answer for 

division by zero is “Undefined.”?  Are we being mathematical articulate when we specify division by zero 

as “Undefined.”?  The authors of this work believe a better and more appropriate answer is warranted and 

needed.   

 

Property Zero Absolute Infinity 

Additive self identity 0 + 0 = 0  
∞ + ∞ = ∞ 

-∞ + -∞ = - ∞ 

Multiplicative self magnitude identity |0| × |0| = |0| 
|∞| × |∞| = |∞| 

|-∞| × |-∞| = |-∞| 
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The following is an explanation of how division by zero is undefined for the reals.  Let us examine the 

simple function y = 1/x and see how the denominator impacts the arithmetic expression as x approaches 

zero.  This will be examined using two (2) different mathematical perspectives.  The first will examine 

the function of y = 1/x where x approaches zero using a graphical basis in a similar fashion as to how the 

Greeks would examine such problems.  The second perspective will examine this expression from a 

modern approach using algebra and analysis, specifically mathematical limits.  The first perspective may 

be accomplished by examining the graphs of the functions y = 1/x and y = -1/x as shown in Figure 2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Real number open system with graph of y = 1/x and y = -1/x 

 

Looking at the function y = 1/x as x approaches zero from the positive x-axis, the function 1/x approaches 

a high real number as shown in Figure 2.  Likewise, as x approaches zero from the negative x-axis, the 

function 1/x approaches a high negative number.  In addition, looking at the function y = -1/x as x 

approaches zero from the positive x-axis, the function y = -1/x approaches a high negative number.  

Similarly, as x approaches zero from the negative x-axis, the function -1/x approaches a high real number.  

The authors are in full agreement with this result, and this is consistent within the current framework and 

structure of mathematics with the real number system.  Using limit notation, this can be summarized by 

the following two expressions as follows, 

 

lim
x→0+

1

x
 =  lim

x→0−

−1

x
 = n   (16) 

 

lim
x→0−

1

x
 =  lim

x→0+

−1

x
 = −n   (17) 

 

where n is an unspecified high real number.   
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One could potentially argue that these expressions are approaching infinity and negative infinity, 

respectively.  However, infinity in mathematics is a concept and not a real number.  Therefore, putting 

infinity as the answer is illogical as answers to mathematical problems are not concepts but numerical 

solutions.  As such, n will be specified as a high real number to ensure that only numbers are used or in 

this case variables representing numbers.  From a limit perspective, this implies that 1/0 equals positive 

or negative high real number depending on the value of x of the domain being examined.  Since two 

reasonable but differing solutions result, n or -n, mathematics currently negates both and labels the 

associated mathematical arithmetic computation with division by zero as “Undefined.”.  In addition, any 

arithmetic computations with a nonzero numerator where division by zero occurs are also referred to as 

“Undefined.”, such as -3/0, 7/0 and so forth.  Seems reasonable.  Right…?  Well, for functional forms, 

yes, this is reasonable and correct.  However, from an arithmetic mathematical perspective, this is 

misleading and incorrect.  The following explains why.  

 

A different story emerges when the ratio is examined as an arithmetic computation and not as a ratio of 

functions.  Examining the arithmetic computation of this ratio, as the denominator approaches zero with 

smaller and smaller positive values, the quotient 1/x approaches a high real number.  This is identical to 

the limit approach from the positive x-axis moving towards zero.  As the denominator approaches zero 

from the negative x-axis, the same quotient, 1/x, approaches a negative high real number.  Again, this is 

the same as the limit approach from the negative x-axis moving towards zero.  However, this approach is 

no different than the denominator approaching zero with smaller and smaller positive values while the 

numerator of the quotient is equal to negative one.  Thus, this quotient also approaches a negative high 

number.  Likewise, the quotient -1/x approaches a high number for negative values of the denominator 

approaching zero.   

 

In evaluating the quotient of 1/0 as a strict arithmetic computation, the numerator must have a purely 

positive value of one, and the denominator is zero, which is neither positive nor negative.   Therefore, the 

zero in the denominator of 1/0 may not influence the signage of the numerator in any way.  In terms of 

arithmetic, 1/0 may be approximated by using a negative small value for x, say x = -0.000001, but only if 

the numerator cancels this negative value by being equal to negative one as shown below.   Thus, the 

negatives cancel out, and do not impact the signage of the resultant as follows. 

 
−1

−0.000001
=

1

0.000001
= 106 

 

Thus, to properly evaluate the arithmetic computation of 1/0, either of the two (2) following procedures 

may be used.  However, both shall result in the same identical solution which is a high real number. 

 

1. A positive value of one in the numerator of the ratio 1/x and a value in the denominator 

approaching zero from the positive x-axis results in a high real number, or 

2. A negative value of negative one in the numerator of the ratio -1/x and a value in the denominator 

approaching zero from the negative x-axis also results in a high real number. 

 

Either procedure yields the same exact and unique solution for 1/0 and that is a high real number, as x 

approaches zero.  Figure 3 shows the graphical arithmetical computation of 1/0 and -1/0, respectively.  The 

solid purple curves represent 1/0 as shown in quadrants I and II of Figure 3, while the dashed purple curves 

represent -1/0 as shown in quadrants III and IV.  Note, the change in quadrants of the solid and dash curves 

in Figure 3 as compared to Figure 2.  This is significant, and the result is correct and logical for all 

arithmetic computations of the general form of a nonzero and nonabsolute infinity number divided by 

zero.  
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From a functional perspective of y = 1/x, the functional value is either a positive or negative high real 

number depending on the direction from which zero is approached which effects the signage of the 

quotient being evaluated.  In this case, the solution using arithmetic computations appears different than 

the functional solution which ultimately uses limits.  So, why is there a contradiction in the graphs of 

Figure 2 and 3 depending on whether limits are used versus arithmetic computations?  What appears to be 

a contradiction in mathematics is no contradiction at all. Performing a limit operation and performing an 

arithmetical operation to determine a result are fundamentally different and have correspondingly 

differing mathematical meanings.  Using limits, the value of the limit of the function or functional form 

as x approaches the limit in question can often be identified.  However, limits do not necessarily give the 

value of the functional form at the limit itself.  In fact, when x equals the limit, the concept of a limit is no 

longer applicable as per the definition of limits.  It is only applicable as you approach the limit.  To obtain 

the value of the expression when x equals the limit, arithmetic computations must be performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Approximate graphical arithmetical computation of 1/0 and -1/0 

 

Arithmetic computations are mathematical operations involving two or more operands.  Arithmetic 

computations are fundamentally different than limits, which are part of mathematical analysis.  While 

limits are important in mathematics, so too are arithmetic computations.  Arithmetic computations and 

functions may be simplified and evaluated at any value that is part of the domain.  However, the current 

practice of mathematics is to disallow the denominator from actually reaching or equaling zero.  This 

practice is not correct.   

 

Simple arithmetic computations involving numbers, such as those described as undefined or indeterminant 

as discussed herein, all have numerical solutions.  Geometry led the Greeks and ultimately all of western 

European mathematical thinking to negate the significance and importance of zero, and infinity too, 

perceiving there existence as somehow illegitimate in mathematics.  Clearly, philosophy and religion 

regarding zero and infinity played a part in this as well.  Even today, mathematics suffers from these scars 

since infinity is still not considered as a number despite being utilized routinely in mathematics as a 
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number.  Infinity can be used in mathematics as a number.  This explains why when John Wallis’s first 

usage of the lemniscate, ∞, was made public, the adoption of this symbol as the number for infinity was 

so quickly adopted and used throughout the mathematics community.  While infinity is not a real number 

or finite number, it is in fact a number, a nonfinite number.  From this, the world’s first arithmetic errorless 

calculator is born.   

 

The First Arithmetic Errorless Calculator  

 

This computer software that functions as a calculator is not without error.  However, from a computational 

perspective, the calculator software algorithm cannot produce an arithmetic error and hence the name and 

title of this work.  All arithmetic errors such as mathematical forms which result in undefined expressions 

and so forth, which typically and routinely cause mathematical errors, have been removed by defining the 

underlining arithmetic solution.  Other errors are possible such as rounding or exceeding the limits of 

inputs or outputs but not errors of an arithmetic form. Figure 4 shows a typical phone app calculator and 

the new errorless calculator.  

 

             
 

  Typical phone app calculator            Arithmetic errorless calculator 

 

Figure 4. Mathematical arithmetic software 

 

The new software tool is programed to act as a calculator as shown in the schematic diagram in Figure 5.  

However, the software first scans each input expression looking for division by zero and/or indeterminant 

forms.  Once located, solutions are specified for these expressions which would typically result in a 

calculator error.  The calculator then follows order of operations and completes the arithmetic and specifies 

a numerical output result.   

 

This is a basic, extended calculator.  Basic implies the ability of the calculator to perform simple operations 

in the correct order based on the inputs.  Operations include addition, subtraction, multiplication, division, 

and exponentiation.  In addition, parentheses may be input as part of the arithmetic ordering process when 

needed.  Numbers may be input as positive or negative except for zero.  Complex number inputs or 

complex outputs are not allowed as this is a basic calculator and not scientific.  In addition, numbers may 

be finite or “extend” to nonfinite numbers.  Finite numbers are the reals as frequently discussed in 
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mathematics such as 0, 1, e, π, 100, -1, -2, -5, -109, and so forth.  Nonfinite numbers are infinite or 

infinitesimal.  Infinite numbers may include ∞1/5, ∞1/2, ∞/7, ∞, ∞/2, 3∞, 11∞, ∞2, ∞3.2, ∞∞, -∞1/6, -∞2/3,             
-∞/3, -∞/11, -∞, -4∞, -9∞, -∞4, -∞7.1, and -∞2∞.  Infinitesimal numbers may include ∞-1/4, ∞-1/2, ∞-1, 7∞-1,   

∞-2.1, ∞-5.2, ∞-∞, -∞-2/7, -∞-3/5, -∞-1, -∞-3, -4∞-6.3, and -∞-3∞.   

 

 
 

Figure 5. Schematic diagram showing how the errorless calculator performs computations 

 

A new mathematical symbol is introduced referred to as absolute infinity, ∞.  Absolute infinity, ∞, is the 

infinity of all infinities.  This number may not be exceeded.  For example, ∞ + ∞ = ∞ and 5 × ∞ = ∞.  

However, if reduced by subtraction, the resulting value will be zero or absolute infinity itself.  For 

example, ∞  –  ∞ = 0 and ∞ – ∞ = ∞.  Likewise, negative absolute infinity, -∞, is the infinity of all negative 

infinities.  For example, -∞ + –∞ = –∞ and 5 × -∞ = –∞.  Negative absolute infinity may not be reduced to 

a number lower than itself.  However, if increased by addition, the resulting value will be zero or negative 

absolute infinity itself.  For example, -∞  –  -∞ = 0 and -∞ + ∞ = -∞.   

 

Infinity, Absolute Infinity, and Number Format  

 

For this new calculator software tool, which includes reals and nonfinite numbers, the mathematical 

lemniscate symbol, ∞, behaves differently than is traditionally used.  Note, traditional infinity is not 

regarded as a number but as a mathematical concept of boundlessness.  For infinity, ±∞, to be used as an 

actual number within the omnifinite number system, the mathematical definition must have specificity as 

discussed in the section, properties of omnifinites.  Omnifinite infinity may be compared with traditional 

infinity as shown in Table 4.    
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Table 4. Omnifinite infinity compared to traditional infinity 

     

 

 

 

 

 

 

 

However, absolute infinity, ∞, arithmetically acts in many cases identical to traditional infinity.  However, 

there are differences.  These similarities and differences are shown in Table 5.   

 

Table 5. Omnifinite absolute infinity compared to traditional infinity 

     

 

 

 

 

 

 

 

 

 

 

Note, NA means not allowed.  The expression is indeterminant. 

 

Calculator outputs shall return numbers that are arranged in order by size of the type.  There are three (3) 

number types, infinites, finites, and infinitesimals.   Positive followed by negative infinites in order of 

their absolute value in size come first.  This is followed by finites in the same manner and then 

infinitesimals.  For example, Table 6 shows the ordering of the outputs based on the following number 

inputs. 

 

Table 6. Ordering of outputs based on inputs using the errorless calculator tool 

 

 

 

 

 

 

 

 

Hands-on Sample Arithmetic Computations 

 

This section provides sample arithmetic computations with solutions which shows the intuitive and 

simplistic nature of using the errorless calculator.  Examples involving addition, subtraction, 

multiplication, division, exponentiation, and mixed operators are shown in Figures 6 thru 11, respectively. 

 

 

 

 

Omnifinite Infinity Traditional Infinity 

∞ + ∞ = 2∞ ∞ + ∞ = ∞ 
-∞ + -∞ = -2∞ -∞ + -∞ = -∞ 

∞ × ∞ = ∞2 ∞ × ∞ = ∞ 
-∞ × -∞ = ∞2 -∞ × -∞ = ∞ 

Absolute Infinity Traditional Infinity 

∞ + ∞ = ∞ ∞ + ∞ = ∞ 
-∞ + -∞ = -∞ -∞ + -∞ = -∞ 

∞ – ∞ = 0 ∞ – ∞ = NA 

-∞ – -∞ = 0 -∞ – -∞ = NA 

∞ × ∞ = ∞ ∞ × ∞ = ∞ 

-∞ × -∞ = ∞ -∞ × -∞ = ∞ 

∞ ÷ ∞ = 1 ∞ ÷ ∞ = NA 
-∞ ÷ -∞ = -1 -∞ ÷ -∞ = NA 

Input Output 
-∞-1 + 78 + 22∞2 22∞2 + 78 – ∞-1 

13 + 3∞-2 – 7 + 9∞ – 4∞-1 9∞ + 6 – 4∞-1 + 3∞-2 

∞-1  + 7 +5∞ + 2.2∞-1 – 12∞ – 9 -7∞ – 2 + 1.1∞-1 

141 + 5∞-3 – 4∞ + 61 + 11∞ + 8∞4 8∞4 + 7∞ + 80 + 5∞-3 
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            Input 1   Operation           Input 2                   Equals        Output 

 

                    
 

                                      
 

                                          
 

                                                   
 

                                                       
 

Figure 6. Errorless arithmetic with addition 

 

 

            Input 1   Operation           Input 2                  Equals        Output 

 

                   
  

                                     
 

                                         
 

                                               
 

                                                      
 

Figure 7. Errorless arithmetic with subtraction 

 

 

            Input 1   Operation           Input 2                   Equals        Output 

 

                   
 

                                       
 

                                         
 

                                                  
 

                                                       
 

Figure 8. Errorless arithmetic with multiplication 
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            Input 1   Operation           Input 2                   Equals        Output 

 

                    
 

                                      
 

                                          
 

                                               
 

                                                        
 

Figure 9. Errorless arithmetic with division 

 

 

            Input 1   Operation           Input 2                   Equals        Output 

 

                   
 

                                      
 

                                         
 

                                                             
 

                                                      
 

Figure 10. Errorless arithmetic with exponentiation 
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Figure 11. Errorless arithmetic with mixed operations 
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Conclusions 

 

Our ability to quantify the world around us is important.  The new errorless calculator is a software tool 

which eliminates all arithmetic errors such as those resulting from division by zero or indeterminant forms 

like zero divided by zero.  Arithmetic errorless computations require a mathematical numerically closed 

system, such as the omnifinite number system as proposed by the authors.  An open system, such as the 

reals or hyperreals, is not robust enough as is and will result in inconsistences or paradoxes which cannot 

be resolved resulting in mathematical errors.  These errors result due to the incomplete fundamental logic 

of the system.  

 

Special mathematical forms, which were previously thought to have had no solution or be undefined such 

as division by zero or other forms that are referred to as indeterminant, are now solved arithmetically.  The 

solutions are exact with no approximation.  The new software tool as shown herein is relatively simple to 

use, and the omnifinite number system used by the software has been developed based on simplicity using 

the lemniscate, ∞, notation symbol for infinities as well as for infinitesimals.  As part of the omnifinite 

number system, two new numbers are introduced.  These new numbers are absolute infinity, ∞, and 

negative absolute infinity, -∞.  It should be noted that it is possible to create a real number system that is 

numerically closed where all arithmetic computations may be performed error free.  However, 

modifications to the real number system are required.  The omnifinite number system includes all real 

numbers, finite numbers, as well as all nonfinite numbers, including infinites and infinitesimals, and this 

is a closed number system.  As a result, this software tool is capable of performing error free arithmetic 

computations, and this will have a significant and global impact on all electronic software that routinely 

performs mathematical operations on numbers such as calculators.   

 

Handheld calculators have been in existence for more than 50 years now.  Mathematical based tools such 

as calculators, computers, and so forth can be developed that utilize this technology to handle not only 

real numbers that are finite in nature but also nonfinite numbers which consist of infinities and 

infinitesimals, as well.  Improving our understanding of nonfinite numbers in nature such as in applied 

fields of study, including physics, chemistry, engineering, and medicine will lead to more innovations in 

the future.  
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